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Abstract
Let (N , ρ) be a Riemannian manifold, S a surface of genus at least two and let f : S → N
be a continuous map. We consider the energy spectrum of (N , ρ) (and f ) which assigns to
each point [J ] ∈ T (S) in the Teichmüller space of S the infimum of the Dirichlet energies
of all maps (S, J ) → (N , ρ) homotopic to f . We study the relation between the energy
spectrum and the simple length spectrum. Our main result is that if N = S, f = id and ρ

is a metric of non-positive curvature, then the energy spectrum determines the simple length
spectrum. Furthermore, we prove that the converse does not hold by exhibiting two metrics
on S with equal simple length spectrum but different energy spectrum. As corollaries to
our results we obtain that the set of hyperbolic metrics and the set of singular flat metrics
induced by quadratic differentials satisfy energy spectrum rigidity, i.e. a metric in these sets
is determined, up to isotopy, by its energy spectrum.We prove that analogous statements also
hold true for Kleinian surface groups.

1 Introduction

In this paper we study, what we will call, the energy spectrum of a Riemannian manifold (see
Sect. 3). Let S be a closed surface of genus at least two, let T (S) be its Teichmüller space, let
(N , ρ) be a Riemannian manifold and let [ f ] be a homotopy class of maps S → N . In brief,
the energy spectrum of (N , ρ) and [ f ] is the function on Teichmüller space that assigns to
each [J ] ∈ T (S) the infimum of the energies of all Lipschitz maps (S, J ) → (N , ρ) that lie
in [ f ]. It gives a measure of how compatible (N , ρ) and a point in Teichmüller space are.

The energy spectrum has been considered (under a different name1) by several authors.
Toledo proved in [23] that the energy spectrum (for any [ f ]) is a plurisubharmonic function
onTeichmüller space if (N , ρ) is a compactmanifold of non-positiveHermitian curvature. He
used this result to give an alternative formulation of the rigidity theory of Siu and Sampson.
In [15] Labourie used the energy spectrum to study Hitchin components in representation
varieties. Given a Hitchin representation ρ : π1(S) → PSL(n,R) he considered the energy
spectrum of N = ρ(π1(S))\PSL(n,R)/PSO(n) and the homotopy class of maps that lift to
ρ-equivariantmaps˜S → PSL(n,R)/PSO(n). He proved that it is a proper function onTeich-

1 In [15] and [23] it is called the energy function or energy functional.
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müller space. Furthermore, he made the conjecture that it has a unique minimum. The author
showed in [20] that in this same setting the energy spectrum is strictly plurisubharmonic.

In this paper we examine to what extent a Riemannian manifold is determined by its
energy spectrum. We begin by restricting ourselves to the case N = S and [ f ] = [id]. We
will define, by analogy with simple length spectrum rigidity, the notion of energy spectrum
rigidity. We will say a set M of metrics on S, determined up to isotopy, satisfies energy
spectrum rigidity if the mapM → C0(T (S)), assigning to each metric its energy spectrum,
is an injection. We will study the question which sets of metrics satisfy this type of rigidity.

The main results of this paper offer a comparison between the energy spectrum and the
simple length spectrum. Our first result states that the energy spectrum determines the simple
length spectrum.

Theorem (Theorem 3.2).Let ρ, ρ′ be non-positively curved Riemannianmetrics on a surface
S of genus at least two. If the energy spectra of (S, ρ) and (S, ρ′) (with [ f ] = [id]) coincide,
then the simple length spectra of ρ and ρ′ coincide.

Our second second results shows that the converse is not true. Namely, the energy spectrum
carries strictly more information and hence is not determined by the simple length spectrum.

Proposition (Proposition 4.1). For every hyperbolic metric on a surface there exists a neg-
atively curved Riemannian metric on that surface with equal simple length spectrum but
different energy spectrum.

In summary, the energy spectrum is a strictly more sensitive way to tell metrics on a
surface apart. This raises the following interesting question: how does the energy spectrum
compare to the (full) marked length spectrum? It is, at the moment, unknown to the author
whether the energy spectrum carries the same information as the marked length spectrum or
whether it carries strictly less information. We discuss this question in more depth in Sect. 4.

As a corollary to our results we obtain that the set of hyperbolic metrics satisfies energy
spectrum rigidity.

Corollary (Corollary 5.1). The set of hyperbolic metrics on S, defined up to isotopy, satisfies
energy spectrum rigidity.

A quadratic differential on S induces a singular flat metric (see Sect. 2.4). It is proved in
[7] that the set of these metrics satisfies simple length spectrum rigidity. It then follows from
our results that this set also satisfies energy spectrum rigidity.

Corollary (Corollary 5.3). The set of singular flat metrics that are induced by quadratic
differentials, defined up to isotopy, satisfies energy spectrum rigidity.

Our interest in these questions surrounding the energy spectrum stems from the work of
Labourie in [15] (as described above).He askedwhether it is possible to assign to eachHitchin
representation an associated point in Teichmüller space, in a mapping class group invariant
way. In cases where the aforementioned Labourie conjecture is true such a projection can
be constructed by mapping a Hitchin representation to the unique minimiser of its energy
spectrum. The Labourie conjecture has been proved for real split simple Lie groups of rank
two ([16]). Marković showed in a recent preprint ([17]) that for the semisimple Lie group
G = �3

i=1 PSL(2,R) the analogue of Labourie’s conjecture does not hold. The conjecture,
however, remains open for simple Lie groups of rank at least three.

Considering this situation from a slightly different angle we ask ourselves how much
information about a Hitchin representation is actually encoded in its energy spectrum. More
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concretely, we ask whether a Hitchin representation is determined, up to conjugacy, by its
energy spectrum. We hope that the results of this paper are a step towards answering this
question in the affirmative. We illustrate this by applying our results to the simpler setting of
Kleinian surface groups. We prove the following result.

Theorem (Theorem 6.1). Let ρ, ρ′ : � → PSL(2,C) be two Kleinian surface groups. If the
energy spectra of ρ and ρ′ coincide, then their simple simple length spectra coincide.

Combined with the results of Bridgeman and Canary in [1] we obtain the following
corollary.

Corollary (Corollary 6.2). If ρ, ρ′ : � → PSL(2,C) are Kleinian surface groups with equal
energy spectrum, then ρ′ is conjugate to either ρ or ρ.

Unfortunately, the results obtained in this paper are not enough to conclude the same for
Hitchin representations. In Sect. 7 we discuss briefly the further steps that would be required
to do so.

2 Prerequisites

We let S be a closed and oriented surface. We will denote its genus by g.

2.1 Teichmüller space

We recall the definition of the Teichmüller space of a surface. A general reference for the
concepts discussed in this section is [12].

A marked complex structure on S is a pair (X , φ) where X is an Riemann surface and
φ : S → X is an orientation preserving diffeomorphism. Two marked complex structures
(X , φ) and (X ′, φ′) are equivalent if there exists a biholomorphism ψ : X ′ → X such that
φ−1 ◦ ψ ◦ φ′ : S → S is isotopic to the identity map.

Definition 2.1 The Teichmüller space of S, denoted T (S), is the set of equivalence classes
of marked complex structures on S.

Teichmüller space can be equipped with a smooth structure (or even a complex structure)
and if S is a surface of genus g ≥ 2, then T (S) is diffeomorphic to R6g−6.

Wewill describe here some alternative ways to describe T (S)whichwill bemore practical
toworkwith in the applicationswe have inmind. The complex structure on aRiemann surface
X is uniquely determined by an automorphism JX : T X → T X that satisfies J 2X = − id.
We note that in general such an automorphism is only an almost complex structure, however
on surfaces every almost complex structure is integrable and hence determines a complex
structure. We see that each marking (X , φ) determines a complex structure J = φ∗ JX on S.
It follows that we can alternatively take

T (S) = {J | J : T S → T S is complex structure on S}/ ∼
as definition of Teichmüller space. Herewe define that J ∼ J ′ if and only if a diffeomorphism
ψ : S → S isotopic to the identity exists such that J ′ = ψ∗ J . Furthermore, on a surface a
complex structure is uniquely determined by a conformal class of metrics and vice versa. So
we could also describe T (S) as the set of conformal structures up to isotopy. Finally, if S is
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a surface of genus at least two, then in each conformal class of metrics on S there exists a
unique hyperbolic metric. So we can also take

T (S) = {ρ | ρ is a hyperbolic metric on S}/ ∼
where ρ ∼ ρ′ if ρ′ = ψ∗ρ for some diffeomorphism ψ of S that is isotopic to the identity.

Thedifferent viewsonTeichmüller spacewill be useful at different points in our discussion.
If we consider a point X ∈ T (S) we will think of this as the surface S equipped with either
a complex structure or a hyperbolic metric, each determined up to isotopy.

2.2 Length of curves

Let ρ be a Riemannian metric on S. If γ ⊂ S is a path in S, then we denote by lρ(γ ) its
length measured with respect to ρ. If [γ ] is a free homotopy class of closed loops on S, then
we denote

	ρ([γ ]) := inf
γ ′∈[γ ]

lρ(γ ′).

Often we will not distinguish between a closed loop on S and the free homotopy class it
determines and simply write 	ρ(γ ) for 	ρ([γ ]).

We will denote by C the set of homotopy classes of closed curves on S and by S ⊂ C the
set of homotopy classes of simple closed curves. The marked length spectrum of a metric ρ

is the vector

(	ρ(γ ))γ∈C ∈ (R>0)
C .

Similarly, the (marked) simple length spectrum of a metric ρ is

(	ρ(γ ))γ∈S ∈ (R>0)
S .

If M is a set of metrics on S, defined up to isometry, then we can ask whether the marked
length spectrum or even the simple length spectrum distinguishes metrics in that set. If
ρ 
→ (	ρ(γ ))γ∈C is an injection ofM into (R>0)

C , then we sayM satisfies length spectrum
rigidity. If the map ρ 
→ (	ρ(γ ))γ∈S injectsM into (R>0)

S , then we sayM satisfies simple
length spectrum rigidity.

If [γ ], [η] are conjugacy classes of simple closed curves on S, then we define their inter-
section number as

i([γ ], [η]) = min{|γ ′ ∩ η′| | γ ′ ∈ [γ ], η′ ∈ [η]}.
If γ and η are simple closed curves, then, for convenience, we will write i(γ, η) rather than
i([γ ], [η]). When γ and η are simple closed geodesics for a non-positively curved metric on
S, then |γ ∩ η| realises i(γ, η).

2.3 Dehn twists

Assume S has genus at least one and let γ ⊂ S a simple closed curve. Let N ⊂ S be a closed
collar neighbourhood of γ which we will identify, in an orientation preserving way, with
[0, 1] ×R/Z. The Dehn twist around γ is the orientation preserving homeomorphism Tγ of
S that is equal to the identity map outside of N and is given by

(t, [θ ]) 
→ (t, [θ + t])
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on N ∼= [0, 1] × R/Z. Since these definitions coincide on the boundary of N , we see that
Tγ is indeed continuous. Note that the isotopy class of Tγ is independent of the choice of
representative in [γ ] and of the choice of collar neighbourhood N . In general we will refer
to any homeomorphism in the isotopy class determined by Tγ as a Dehn twist around γ . By
a slight modification to the above construction it is possible to find a smooth representative
of the isotopy class.

A Dehn twist defines a mapping on Teichmüller space. Namely, if [(X , φ)] ∈ T (S), then
Tγ · [(X , φ)] = [(X , φ ◦T−1

γ )]. To put this in a slightly broader context we note that the Dehn
twist is an element of the mapping class group of the surface S. The mapping class group
has a natural action on Teichmüller space which is given by precisely the mapping defined
here for the Dehn twist.

If η ⊂ S is a closed loop (resp. a homotopy class of closed loops), then we define Tγ η to
be the loop Tγ ◦ η (resp. the homotopy class containing this loop).

In our proof of Theorem 3.2 we will need a lower bound on the length of a loop that has
been Dehn twisted often. The following lemma provides such an estimate.

Lemma 2.2 Let (S, ρ) be an oriented surface of genus at least two equipped with a metric
of non-positive curvature. For every pair γ, η ⊂ S of simple closed curves there exists a
constant C = C(γ, η) > 0 such that

	ρ(T n
γ η) ≥ n · i(γ, η) · 	ρ(γ ) − C

for all n ≥ 1.

Let M = ˜S be the universal cover of S equipped with the pullback metric. In our proof
of Lemma 2.2 we will use that M is non-positively curved, both in a local sense and in a
global sense. We will use [3] as our reference for the facts on metric spaces of non-positive
curvature that we will need. Because ρ is a metric of non-positive curvature, it follows that
M is a CAT(0) space ([3,Section II.1]).

Moreover, it is also a Gromov δ-hyperbolic space for some δ > 0 because, by the Švarc-
Milnor lemma, it is quasi-isometric to the Cayley graph of π1(S). We use the following
definition of Gromov hyperbolicity (see Definition 1.16 in ([3,Section III.H.1]). Consider
a geodesic triangle  in M with vertices x, y, z ∈ M . There exist a, b, c ≥ 0 such that
d(x, y) = a + b, d(x, z) = a + c, d(y, z) = b + c. Consider the tripod T , which is a
simplicial tree with three edges, a root vertex o of valence three and three leaf vertices
x ′, y′, z′ of valence one such that d(o, x ′) = a, d(o, y′) = b, d(o, z′) = c (where we allow
for degenerate cases in which one or more of a, b and c are zero). There exists a unique map
 → T mapping x to x ′, y to y′ and z to z′ that is an isometry when restricted to any side
of . We say the triangle  is δ-thin if each of the fibers of the map  → T has diameter at
most δ in M . We define M to be δ-hyperbolic if all geodesic triangles in M are δ-thin.

We first prove two auxiliary lemmas. For any two points x, y ∈ M let us denote by [x, y]
the (directed) geodesic segment connecting x to y. Furthermore, for x, y, z ∈ M we denote
by ∠z(x, y) the angle the geodesic segments [x, z] and [z, y] make at z.

Lemma 2.3 For all x, y, z ∈ M with ∠z(x, y) ≥ π/2 we have

d(x, y) ≥ d(x, z) + d(y, z) − 4δ.

Proof Because M is Gromov δ-hyperbolic, it follows that the triangle with vertices x, y, z is
δ-thin. If we consider the associated tripod T and map → T as above, then the diamater of
the fiber over the root vertex o is at most δ. Because each side of the triangle contains a point
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that is mapped to o there exist points wx,y ∈ [x, y], wx,z ∈ [x, z], wy,z ∈ [y, z] such that
diam({wx,y, wx,z, wy,z}) ≤ δ. We compare the triangle with vertices wx,z, wy,z, z to a trian-
gle in the Euclidean plane with vertices a, b, c that satisfy d(a, c) = d(wx,z, z), d(b, c) =
d(wy,z, z) and ∠c(a, b) = ∠z(wx,z, wy,z) = ∠z(x, y) ≥ π/2. From the CAT(0) condition
follows (see [3,Proposition II.1.7(5)]) that

δ ≥ d(wx,z, wy,z) ≥ d(a, b) ≥
√

d2(wx,z, z) + d2(wy,z, z).

From this we conclude that that d(z, wx,z) ≤ δ. The triangle inequality then yields that

d(wx,y, z) ≤ d(wx,y, wx,z) + d(wx,z, z) ≤ 2δ.

Using again the triangle inequality now gives

d(x, y) = d(x, wx,y) + d(wx,y, y) ≥ d(x, z) − d(wx,y, z) + d(y, z) − d(wx,y, z)

≥ d(x, z) + d(y, z) − 4δ.

�
Consider three points x, y, z ∈ M and let γx,y : [0, 1] → M be a parametrisation of [x, y]

with γx,y(0) = x and γx,y(1) = y. Similarly, let γy,z be a parametrisation of [y, z]. We
say the angle that [x, y] and [y, z] make at y is positively oriented if (γ̇x,y(1), γ̇y,z(0)) is a
positively oriented frame of TyM (recall that S is oriented and hence also M). We say it is
negatively oriented otherwise.

Consider a continuous path consisting of a concatenation of geodesic segments
[x0, x1], [x1, x2], . . . , [xn−1, xn] with pairwise distinct points xi ∈ M . We call such a path a
stairstep path if all successive segments meet each other orthogonally and the orientation of
the angle between segments at points xi is alternately positive and negative. So either each
angle at even numbered points is positively oriented and negatively oriented at odd numbered
points or it is the other way around.

Lemma 2.4 If the segments [x0, x1], [x1, x2], . . . , [xn−1, xn] form a stairstep path, then

d(x0, xn) ≥
n

∑

i=0

d(xi , xi+1) − 4(n − 1)δ.

Proof For i = 0, . . . , n−1 let Li be the geodesic inM that contains the segment [xi , xi+1]. A
pair of geodesics Li , Li+2 is connected by a segment [xi+1, xi+2] that meets both geodesics
orthogonally. It follows fromconvexity of the distance function that this is the unique geodesic
segment that realises the shortest path between Li and Li+2. Because we assumed that the
points xi are pairwise distinct it follows that Li and Li+2 are a positive distance apart. In
particular, they do not intersect.

Each Li divides the manifold M into two halves. For i = 0, . . . , n − 2 let Hi be the
component of M − Li that contains xn . From the assumption that successive angles have
opposite orientation it follows that xn and xn−3 lie on opposite sides of Ln−2 and hence
xn−3 /∈ Hn−2. Because the segment [xn−4, xn−3] is contained in Ln−4 which is disjoint from
Ln−2, we also have xn−4 /∈ Hn−2. We claim the same holds for xn−5. Since Ln−4 and Ln−2

do not intersect, it follows that Ln−2∪Hn−2 ⊂ Hn−4. Note that xn−2 ∈ Ln−2 ⊂ Hn−4. Using
again the assumption that successive angles have opposite orientation we find that xn−2 and
xn−5 lie on opposite sides of Ln−4, hencewemust have xn−5 /∈ Hn−4. Because Hn−2 ⊂ Hn−4

we conclude that in particular xn−5 /∈ Hn−2. Continuing this argument inductively we find
that x0 /∈ Hn−2 or, in other words, x0 and xn lie on opposite sides of Ln−2.
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We now prove the lemma by induction on n, the number of segments. For n = 1 the
statement is trivial and for n = 2 it follows directly from Lemma 2.3. Assume the lemma
holds for some n ≥ 2. Consider a stairstep path [x0, x1], . . . , [xn, xn+1] consisting of n + 1
segments. Let Ln−1 as defined above. Then the segments [x0, xn] and [xn, xn+1] lie on
opposite sides of Ln−1 and meet at xn ∈ Ln−1. Because the segment [xn, xn−1] is orthogonal
to Ln−1, it follows that ∠xn (x0, xn+1) ≥ π/2. We apply Lemma 2.3 to find

d(x0, xn+1) ≥ d(x0, xn) + d(xn, xn+1) − 4δ

≥
n

∑

i=0

d(xi , xi+1) + d(xn, xn+1) − 4(n − 1)δ − 4δ

=
n+1
∑

i=0

d(xi , xi+1) − 4nδ.

Here the second inequality follows from the induction assumption. We see that the lemma
also holds for paths consisting of n + 1 segments. This concludes the argument. �
Proof of Lemma 2.2 The statement is trivial if i(γ, η) = 0. Hence, from now on we assume
that i(γ, η) > 0. Take γ and η to be geodesic representatives in (S, ρ) of their free homotopy
class. These loops realise the minimal number of intersections so k := i(γ, η) = |γ ∩ η|.
We label the intersection points γ ∩ η = {p1, . . . , pk} in order of appearance along some
parametrisation of η. Cut η into k pieces η1, . . . , ηk , where each ηi is the subarc connecting
pi to pi+1 (and ηk connects pk to p1).

For each i = 1, . . . , k let Ai be the geodesic arc of minimal length in the homotopy class
of ηi with endpoints sliding freely over γ . Each arc Ai meets γ orthogonally because it is
lengthminimising. The loop η is homotopic to a unique loopω0 consisting of a concatenation
of geodesic arcs

A1, B1,0, A2, B2,0, . . . , Ak, Bk,0

where each Bi,0 is an arc that lies along the geodesic γ . Similarly, the Dehn twisted loops
T n

γ η are homotopic to a unique loop ωn consisting of segments A1, B1,n, . . . , Ak, Bk,n . Each
Bi,n differs from Bi,0 by n turns around γ .

After untwisting any turns that ηmade around γ in the opposite direction of the Dehn twist
we find that for n high enough the angle between each Ai and Bi,n is positively oriented and
the angle between each Bi,n and Ai+1 is negatively oriented. It follows that if we lift ωn to M
it is a stairstep path.We also see there exists a constant c > 0 such that lρ(Bi,n) ≥ n ·	ρ(γ )−c
for all i = 1, . . . , k and n ≥ 1.

Consider the geodesic representatives ηn of the homotopy classes T n
γ η. Because for n

high enough the arc B1,n winds around γ at least once, it follows that ηn and ωn intersect at
least once. Parametrise ηn : [0, 1] → S to start at such an intersection point and consider a
lift η̃n to M . The endpoints of η̃n are connected by the stairstep path that is a lift of ωn . We
use Lemma 2.4 to conclude that

	ρ(η) = d (̃ηn(0), η̃n(1)) ≥
k

∑

i=0

(lρ(Ai ) + lρ(Bi )) − 4kδ

≥ n · k · 	ρ(γ ) − (4δ + c) · k
= n · i(γ, η) · 	ρ(γ ) − C

where we take C = (4δ + c) · k. �
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2.4 Conformal geometry of surfaces

In this section we will consider some of the conformal aspects of the geometry of a closed
surface. We let X be a closed Riemann surface.

Definition 2.5 Let γ ⊂ X be a closed curve. We define the extremal length of γ in X to be

EX (γ ) = sup
σ

	2σ (γ )

Area(σ )
. (1)

Here the supremum runs over all metrics in the conformal class determined by X .

In case γ is a simple closed curve a second equivalent definition for its extremal length
exists. We will denote the modulus of an annulus A ⊂ X by M(A).

Definition 2.6 If γ ⊂ X is a simple closed curve, then

EX (γ ) = inf
A

1

M(A)
(2)

where the infimum runs over all annuli in X whose core curve is homotopic to γ .

When γ is a simple closed curve, then the metric realising the supremum in Equation (1)
and the annulus realising the infimum in Equation (2) can be explicitly described. In order to
do this we need to consider Strebel differentials on X which we will describe here. We refer
to [21] as a reference on Strebel differentials and quadratic differentials in general.

A quadratic differential φ on X is a differential that in any local coordinates can be written
as φ = φ(z)dz2 with φ(z) a holomorphic function. A quadratic differential determines two
singular foliations of X . Namely, away from the zeroes of φ, lines that have tangent directions
v ∈ T S with φ(v, v) > 0 form a foliation called the horizontal foliation of φ and lines with
φ(v, v) < 0 form its vertical foliation. The leaves of these foliations are called singular if
they terminate in a zero of φ and are called non-singular otherwise. Furthermore, a quadratic
differential also determines a flat singular metric on S which can be expressed as |φ(z)||dz|2
in local coordinates. Around any point on S that is not a zero of φ there exist complex
coordinates in which φ = dz2. In these coordinates the singular flat metric is simply the
Euclidean metric |dz|2, the horizontal foliation consists of the lines with constant Im z and
the vertical foliation consists of the lines with constant Re z.

For every simple closed curve γ ⊂ X there exists a unique quadratic differential, called
the Strebel differential, such that every non-singular leaf of the horizontal foliation of the
differential is closed and homotopic to γ . The annulus obtained by taking the union of these
non-singular leaves realises the infimum in Equation (2). The singular flat metric that is
determined by the Strebel differential realises the supremum in Equation (1).

We will prove here some results on the extremal length of intersecting curves that we will
need in our proofs below.

Lemma 2.7 Let γ, η ⊂ X be simple closed curves. Then

EX (γ )EX (η) ≥ i(γ, η)2. (3)

Proof Consider the Strebel differential of γ on X . Let A ⊂ X be the annulus consisting of
the union of all non-singular leaves of its horizontal foliation. Then we have M := M(A) =
1/EX (γ ). Consider on X the singular flat metric σ determined by the Strebel differential.
Normalise such that the annulus A has circumference 1 and height M . Any curve homotopic

123



Geometriae Dedicata           (2022) 216:47 Page 9 of 22    47 

to η crosses the annulus at least i(γ, η) times and hence 	σ (η) ≥ i(γ, η) · M . Then from
Equation (1) we see that

EX (η) ≥ 	σ (η)2

Area(σ )
≥ i(γ, η)2M2

M
= 1

EX (γ )
i(γ, η)2.

This proves the result. �
Lemma 2.8 Let S be a surface of genus at least two and let γ ⊂ S a simple closed curve.
Then there exists a simple closed curve η ⊂ S, satisfying i(γ, η) ∈ {1, 2}, such that for every
ε > 0 there exists a complex structure X on S with

EX (γ )EX (η) ≤ i(γ, η)2 + ε

and

1 − ε ≤ EX (γ ) ≤ 1 + ε.

Proof We construct the complex structure on S by cutting and pasting together several pieces.
Themain idea is to startwith a smallerRiemann surface and curvesγ, η forwhichEquation (3)
is an equality. Then we add pieces to this surface to make it of the same topological type as
S in a way that does not disturb the quantity EX (γ )EX (η) to much.

For our construction we need to distinguish between two cases, namely whether γ is a
separating curve or not. We will start with the case that γ is separating which is the more
complicated case. The curve γ separates S into two surfaces S′, S′′ with border. Denote by
g′, g′′ ≥ 1 their respective genus. Then the genus of S equals g = g′ + g′′.

We start by considering a square with side lengths 1 inC. We glue the boundary according
to the gluing pattern given in Fig. 1 to obtain the 2-sphere. We denote by X0 the 2-sphere
equipped with the complex structure determined by this gluing. We consider two simple
closed loops γ ′ and η′ on the sphere as specified in Fig. 1. Fix a small constant δ > 0. In each
of the four components of the complement of γ ′ ∪ η′ we cut a slit of length δ at the locations
as indicated in Fig. 1 (the slits are marked by (I) through (IV)). We let X ′ be an arbitrary

Fig. 1 A gluing pattern on the
boundary of a square. Edges
labelled with the same letter are
glued together according to the
orientation indicated by the
arrows. We cut slits of length δ at
the places indicated by (I)
through (IV)

a a

b b

c c
γ’

η’η’

(III)

(IV)(II)

(I)
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γ’

η’

Fig. 2 Example of a gluing as described above with g′ − 1 = 0 and g′′ − 1 = 2

closed Riemann surface of genus g′ − 1. At arbitrary points in X ′ we cut two slits. We glue
one of these slits to the slit marked (I) in X0. The other slit we glue to the slit marked (II).
Similarly, we take X ′′ an arbitrary Riemann surface of genus g′′ − 1, again cut two slits and
glue X ′′ to X0 by gluing one of these slits to the slit marked (III) and the other to the slit
marked (IV).

We denote by X = X0 � X ′ � X ′′/ ∼ the Riemann surface that is obtained from these
gluings. Let us first make the observation that in X the curves γ ′ and η′ are no longer null
homotopic (as they were on the sphere) and they satisfy i(γ ′, η′) = 2. Secondly, we note that
the genus of X equals g. Namely, the combined genus of X ′ and X ′′ contributes g′ + g′′ − 2
to the genus of X and the fact that we glued each surface along two slits contributes 2 more
(see Fig. 2).

Consider the square inC fromwhich we glue X0. We note that the 1/2−δ neighbourhood
of the curve γ ′ in the square intersects no slits. This neighbourhood descends to an annulus in
X around γ ′ that has modulus 1−2δ. FromEquation (2) it follows that EX (γ ′) ≤ 1/(1−2δ).
Similarly, the 1/4 − δ neighbourhood of η′ in the square intersects no slits and descends to
an annulus in X around η′. Its modulus equals 1/4 − δ and hence EX (η′) ≤ 1/(1/4 − δ).
We now see that for any ε > 0 there is a δ small enough such that

EX (γ ′)EX (η′) ≤ 1

1 − 2δ
· 1

1/4 − δ
≤ 4 + ε = i(γ, η)2 + ε

and EX (γ ′) ≤ 1+ε. For the lower bound on EX (γ ′)we combine Equation (3)with EX (η′) ≤
1/(1/4 − δ) to find that also EX (γ ′) ≥ 1 − ε for δ small enough.

Finally, we note that γ ′ separates X into two surfaces with border that have genus g′ and
g′′ respectively. It follows from the classification of surfaces that these two subsurfaces are
diffeomorphic to the two corresponding subsurfaces of S. By gluing these diffeomorphisms
together we find that there exists a diffeomorphism between X and S that sends the homotopy
class of γ ′ to that of γ . We let η be the simple closed curve in S that corresponds to η′ under
this diffeomorphism. We note that the homotopy class of η only depends on the placement
of the slits in X0 we glued along and not on the constant δ. Hence, we can take η the same
for all choices of ε. Using this diffeomorphism we equip S with a complex structure that
satisfies the bounds on the extremal length of γ and η.

The casewhere γ is non-separating is easier. In this casewe take X0 to be a torus and γ ′ and
η′ a pair of simple closed curves with i(γ ′, η′) = 1. By picking a suitable complex structure
on the torus we can realise equality in Equation (3) and EX (γ ′) = 1. We glue an arbitrary
Riemann surface of genus g − 1 to the torus along a single small slit to obtain a Riemann
surface X of genus g. Again by the classification of surfaces we can find a diffeomorphism
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between X and S that takes γ ′ to γ . The estimate on the extremal lengths γ and η in this
case is similar to the previous case. �

2.5 Harmonic maps

Let (M, σ ) and (N , ρ) be Riemannian manifolds. Consider a Lipschitz continuous map
f : N → N . We define its energy density e( f ) : M → R to be

e( f ) = 1

2
‖d f ‖2

where the norm ‖·‖ is the Hilbert-Schmidt norm on the vector bundle T ∗M⊗ f ∗T N induced
by themetrics σ and ρ. Recall that theHilbert-Schmidt norm of d f at a point x ∈ M is defined
to be ‖d f ‖2 = ∑m

i=1‖d f · ei‖2ρ where (ei )mi=1 is any orthonormal basis of TxM with respect
to σ .

The energy density is a pointwise measure of the amount of stretching that a map does.
We note that as f is Lipschitz continuous it is differentiable almost everywhere and hence
e( f ) is defined almost everywhere. The Dirichlet energy of f is defined as

E( f ) =
∫

M
e( f ) volσ .

A critical point of this energy functional is called a harmonic map. If σ and ρ are smooth
Riemannian metrics, then a harmonic map is also smooth.

A straightforward calculation shows that if M is a surface, then the Dirichlet energy of
a map is independent of conformal scalings of the metric σ . It follows that in this case the
harmonicity of a map and its energy depend only on the conformal structure on the surface.
If we want to stress the dependence of the energy on a complex structure J on M and the
metric ρ on N wewill write e( f ; J , ρ) for the energy density and E( f ; J , ρ) for the Dirichlet
energy of a map f .

We will make use of the following lemma by Minsky.

Lemma 2.9 ([18,Proposition 3.1]). Let X be a Riemann surface and (N , ρ) be a Riemannian
manifold. For any map f : X → (N , ρ) and any simple closed curve γ ⊂ X we have

E( f ) ≥ 1

2

	2ρ( f ◦ γ )

EX (γ )
.

3 The energy spectrum

In this section we introduce the energy spectrum of a Riemannian manifold and study its
relation to the simple length spectrum.

Let S be a surface of genus at least two and let (N , ρ) be a Riemannian manifold. We fix
a homotopy class [ f ] ∈ [S, N ] of maps from S to N . For every complex structure J on S
we consider the quantity

E (J ) = inf
h∈[ f ] E(h; J , ρ).

Here the infimum is taken over all Lipschitz continuous maps in the homotopy class [ f ].
If φ : S → S is a diffeomorphism, then φ : (S, φ∗ J ) → (S, J ) is a biholomorphism. In
particular, we have E(h ◦ φ;φ∗ J , ρ) = E(h; J , ρ). It follows that if φ is isotopic to the
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identity, then E (J ) = E (J ◦ φ) and we see that the function E descends to a well-defined
function on Teichmüller space.

Definition 3.1 The energy spectrum of (N , ρ) and [ f ] is the function E : T (S) → R given
by

E ([J ]) = inf
h∈[ f ] E(h; J , ρ)

where the infimum is taken over all Lipschitz continuous maps in [ f ].
We will often suppress the dependence on a choice of the homotopy class [ f ] and simply

refer to the energy spectrum of (N , ρ).
The energy spectrum gives a rough measure of the compatibility between (N , ρ) and

points in Teichmüller space. Namely the quantity E ([J ]) measures how much the complex
surface (S, J ) must be stretched for it to be mapped into (N , ρ).

The energy spectrum defines a continuous map on Teichmüller space (see for example
[22, Lemma 4.2]). If we assume that for every complex structure there exists an energy
minimising harmonic map f J : (S, J ) → (N , ρ) in the homotopy class [ f ], then E ([J ]) =
E( f J ; J , ρ). By the classical results of [9] this is for example the case if (N , ρ) is compact
and has non-positive curvature. If the harmonic maps f J are unique and satisfy certain non-
degeneracy conditions, then they depend smoothly on the complex structure (see [8]). This
happens for example if (N , ρ) is negatively curved and the map f can not be homotoped
into the image of a closed geodesic. In this case the energy spectrum E is a smooth map on
Teichmüller space.

To state our main result we will restrict to the situation where N = S is a surface of genus
at least two, [ f ] = [id] and ρ is a non-positively curved Riemannian metric on S.

Theorem 3.2 Let ρ, ρ′ be non-positively curved Riemannian metrics on a surface S of genus
at least two. If the energy spectra of (S, ρ) and (S, ρ′) (with [ f ] = [id]) coincide, then the
simple length spectra of ρ and ρ′ coincide.

Simply put, the energy spectrum of a metric determines its simple length spectrum. In
fact, we will detail a procedure that recovers the length of a simple closed curve from the
information given by the energy spectrum. Our principal observation is that when repeat-
edly Dehn twisting around a simple closed curve the quadratic growth rate of the energy is
proportional to the square of the length of that curve in (S, ρ).

We now start our proof of Theorem3.2. For thiswe fix a non-positively curvedRiemannian
metric ρ on S. We let E : T (S) → R be its energy spectrum.

Definition 3.3 For γ ⊂ S a simple closed curve, X ∈ T (S) and n ∈ N we define

τ(X , γ, n) = E (T n
γ X)

n2

and

τ−(X , γ ) = lim inf
n→∞ τ(X , γ, n) and τ+(X , γ ) = lim sup

n→∞
τ(X , γ, n).

Remark 3.4 The value of the energy spectrum at the point T n
γ X can alternatively be charac-

terised as

E (T n
γ X) = inf

h′∈[T n
γ ]
E(h′; J , ρ)
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where the infimum runs over all Lipschitz continuous maps h′ : S → S homotopic to T n
γ .

To see this we let J be a complex structure on S representing X ∈ T (S). Then the complex
structure (T−n

γ )∗ J is a representative of T n
γ X . Now the map T n

γ : (S, J ) → (S, (T−n
γ )∗ J )

is a biholomorphism, hence for any Lipschitz continuous map h : S → S we have
E (h; (T−n

γ )∗ J , ρ) = E (h ◦ T n
γ ; J , ρ). Noting that h ∈ [id] if and only if h ◦ T n

γ ∈ [T n
γ ] we

find that indeed

E (T n
γ X) = inf

h∈[id] E(h; (T−n
γ )∗ J , ρ) = inf

h′∈[T n
γ ]
E(h′; J , ρ).

Wewill now show that the quantities τ−(·, γ ) and τ+(·, γ ) can be used to measure 	ρ(γ ).

Lemma 3.5 For any X ∈ T (S) and γ ⊂ S a simple closed curve we have

τ+(X , γ ) ≤ 1

2
EX (γ ) · 	2ρ(γ ).

Proof Consider a complex structure on S that represents X ∈ T (S). For convenience we will
denote S equipped with this choice of complex structure also as X .

Wewill find an upper bound for the quantity E (T n
γ X). To this end we construct a Lipschitz

continuous map kn : X → (S, ρ) in the homotopy class of T n
γ for which we have an explicit

bound on its energy. Then the observations of Remark 3.4 will imply that E (T n
γ X) ≤ E(kn).

Consider the Strebel differential on X for the curve γ . Let A be the annulus in X consisting
of the union of all non-singular horizontal leaves of this Strebel differential. If M = M(A)

is the modulus of A, then EX (γ ) = 1/M . By uniformising A we can find a conformal
identification between A and the flat cylinder [0, M] × R/Z. We use this to equip A with
coordinates (x, [y]) ∈ [0, M] × R/Z.

Let η : R/Z → (S, ρ) be a length minimising geodesic loop freely homotopic to γ (so
	ρ(γ ) = lρ(η)). Let 0 < ε < M/2 arbitrary. By deforming the identity map of S we can
find a Lipschitz continuous map k0 : X → S that is homotopic to the identity and on the
subcylinder

Aε = {(x, [y]) | ε ≤ x ≤ M − ε}
is given by k0(x, [y]) = η([y]). Let Y be the complement of Aε in X . We set C = E(k0|Y )

which is a constant depending only on our choice of k0 (which in turn depends only on ε).
For n ∈ N we define the maps kn : X → S as follows. On Y we set kn |Y ≡ k0|Y and on

Aε we put

kn(x, [y]) = η

([

y + n · x − ε

M − 2ε

])

.

The map kn coincides with k0 on the boundaries of Aε and hence each kn defines a Lipschitz
continuous map on X . Note that each kn is homotopic to T n

γ .
We now calculate the energy of the maps kn . To this end this we equip Aε with the

conformal flat metric obtained from the identification A ∼= [0, M] ×R/Z. Using this choice
of metric, we find on Aε that

e(kn) = 1

2

{

∥

∥

∥

∥

∂kn
∂x

∥

∥

∥

∥

2

+
∥

∥

∥

∥

∂kn
∂ y

∥

∥

∥

∥

2
}

= 1

2

{

(

n

M − 2ε

)2

+ 1

}

‖η̇‖2.

Hence

E(kn |Aε ) =
∫ 1

0

∫ M−ε

ε

e(kn)dxdy
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= 1

2

{

(

n

M − 2ε

)2

+ 1

}

·
∫ 1

0

∫ M−ε

ε

‖η̇‖2dxdy

= 1

2

{

(

n

M − 2ε

)2

+ 1

}

· (M − 2ε) · 	2ρ(γ ).

We can now estimate (cf. Remark 3.4)

τ(X , γ, n) = E (T n
γ X) ≤ E(kn) = E(kn |Aε ) + E(kn |Y )

= 1

2

{

n2

M − 2ε
+ M − 2ε

}

· 	2ρ(γ ) + C .

By dividing by n2 and taking the limit superior for n → ∞ we find

τ+(X , γ ) ≤ 1

2

1

M − 2ε
· 	2ρ(γ ).

Finally, noting that ε > 0 was arbitrary we conclude that

τ+(X , γ ) ≤ 1

2

1

M
· 	2ρ(γ ) = 1

2
EX (γ ) · 	2ρ(γ ).

�
Lemma 3.6 For any X ∈ T (S) and simple closed curves γ, η ⊂ S we have

τ−(X , γ ) ≥ 1

2

i(γ, η)2 · 	2ρ(γ )

EX (η)

Proof Let us again, by abuse of notation, denote by X both a point in Teichmüller space and a
Riemann surface representing it. The lemma follows easily from Lemma 2.9 and Lemma 2.2.
Namely, from the latter follows that a constant C = C(γ, η) > 0 exists such that

	ρ(T n
γ η) ≥ n · i(γ, η) · 	ρ(γ ) − C .

Any map h : X → (S, ρ) homotopic to T n
γ maps η to a curve homotopic to T n

γ η. Now
Lemma 2.9 gives a lower bound on the energy of such maps. It follows that

τ(X , γ, n) = E (T n
γ X) ≥ 1

2

(n · i(γ, η) · 	ρ(γ ) − C)2

EX (η)
.

Dividing by n2 and taking the limit inferior for n → ∞ gives

τ−(X , γ ) ≥ 1

2

i(γ, η)2 · 	2ρ(γ )

EX (η)
.

�
We now have for any X ∈ T (S) and γ, η ⊂ S simple closed curves that

1

2

i(γ, η)2 · 	2ρ(γ )

EX (η)
≤ τ−(X , γ ) ≤ τ+(X , γ ) ≤ 1

2
EX (γ ) · 	2ρ(γ ). (4)

We observe that these bounds are close together if the quantity EX (γ )EX (η) is close to
i(γ, η)2. We use Lemma 2.8 to finish the proof of Theorem 3.2.
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Proof of Theorem 3.2 Fix a simple closed curve γ ⊂ S. We invoke Lemma 2.8 to find a
simple closed curve η ⊂ S with i(γ, η) > 0 and for every k ∈ N a Xk ∈ T (S) such that
EXk (γ )EXk (η) ≤ i(γ, η)2 + 1/k and |EXk (γ ) − 1| ≤ 1/k. Plugging these inequalities into
Equation (4) yields

1

2

i(γ, η)2(1 − 1/k)

i(γ, η)2 + 1/k
· 	2ρ(γ ) ≤ τ−(Xk, γ ) ≤ τ+(Xk, γ ) ≤ 1

2
(1 + 1/k) · 	2ρ(γ ).

It follows that both τ−(Xk, γ ) and τ+(Xk, γ ) converge to 1
2 · 	2ρ(γ ) for k → ∞. We see

that 	ρ(γ ) is entirely determined by the energy spectrum since the same holds true for the
functions τ+ and τ−.

More precisely, if ρ′ is a second non-positively curved Riemannian metric on S with equal
energy spectrum, then Equation (4) also holds with 	ρ′(γ ) in place of 	ρ(γ ). We then see
that

1

2
	2ρ′(γ ) = lim

k→∞ τ−(Xk, γ ) = lim
k→∞ τ+(Xk, γ ) = 1

2
	2ρ(γ )

hence 	ρ(γ ) = 	ρ′(γ ). Since γ ⊂ S was arbitrary, it follows that ρ and ρ′ have equal simple
length spectrum. �

4 Further comparison to the length spectra

In this section we show that the converse to the result of the previous section does not hold.
Namely, the simple length spectrum does not determine the energy spectrum. Thus, we see
that the energy spectrum carries more information.

Proposition 4.1 For every hyperbolic metric on a surface there exists a negatively curved
Riemannian metric on that surface with equal simple length spectrum but different energy
spectrum.

We will show this by proving that the energy spectrum encodes the area of a Riemannian
metric on a surface, whereas the simple length spectrum does not. We will make use of the
following well-known observation.

Lemma 4.2 Let (S, ρ) be a surface of genus at least one equipped with a Riemannian metric.
Then the energy spectrum of (S, ρ) (with [ f ] = [id]) satisfies

E (X) ≥ Area(S, ρ) for all X ∈ T (S).

If, furthermore, the metric ρ is non-positively curved, then equality is achieved if and only if
X equals [ρ] ∈ T (S), the point in Teichmüller space determined by the metric ρ.

Proof Let σ be a hyperbolic metric on S. Themetrics σ and ρ determine conformal structures
on S. In corresponding local conformal coordinates z resp.w on Swecanwriteσ = σ(z)|dz|2
and ρ = ρ(w)|dw|2. Then the energy density of a map h : (S, σ ) → (S, ρ) is given by

e(h; σ, ρ) = ρ(h(z))

σ (z)

{|hz |2 + |hz |2
}

and its Jacobian is given by

J (h; σ, ρ) = ρ(h(z))

σ (z)

{|hz |2 − |hz |2
}
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(see [24,Section 2]). Integrating over S gives

E(h; σ, ρ) =
∫

S
e(h; σ, ρ) volσ ≥

∫

S
J (h; σ, ρ) volσ = Area(S, ρ)

with equality if and only if h is a conformal map (i.e. hz = 0).
From this follows immediately that E (X) ≥ Area(S, ρ) for all X ∈ T (S). If [σ ] = [ρ] ∈

T (S), then there exists a conformal map h : (S, σ ) → (S, ρ) homotopic to the identity. For
this map we see that E (h; σ, ρ) = Area(S, ρ), so E ([σ ]) = E(h; σ, ρ) = Area(S, ρ).

Finally, supposeρ has non-positive curvature. Assume X = [σ ] ∈ T (S) such thatE (X) =
Area(S, ρ). By [9] there exists a energy minimising harmonic map h : (S, σ ) → (S, ρ)

homotopic to the identity. Then E(h; σ, ρ) = E (X) = Area(S, ρ), hence h must be a
conformal map. Because h has degree one, it follows from the Riemann-Hurwitz formula
that it can not have branch points. We conclude that h is a biholomorphism isotopic to the
identity which means that X = [σ ] = [ρ]. �
Proposition 4.1 Let ρ be any hyperbolic metric on the surface S. Let G be the union of all
simple closed geodesics in (S, ρ). Birman and Series prove in [5] that this set is nowhere
dense on S. In particular, there exists an open setU ⊂ S such thatU does not intersect G. Let
χ : S → [0, 1] be a smooth bump function which is zero outside ofU and equals one on some
point in U . For δ > 0 we consider the metric ρ′ = (1 + δ · χ)ρ. If we take δ small enough,
then ρ′ is still a negatively curved metric. Because ρ = ρ′ on an open neighbourhood of G,
it follows that the simple closed geodesics for either metric are the same. As a result their
simple length spectra are equal.

Finally, on some points in U we have that (1 + δ · χ) > 1 and hence Area(S, ρ′) >

Area(S, ρ). Taking into consideration Lemma 4.2 we see (denoting the energy spectra of ρ

and ρ′ by E and E ′ respectively) that

min
X∈T (S)

E ′(X) = Area(S, ρ′) > Area(S, ρ) = min
X∈T (S)

E (X)

so E �= E ′. �
We conclude that the energy spectrum is a more sensitive way to tell non-positively curved

Riemannian metrics on S apart than the simple length spectrum. With this in mind, we can
pose the following interesting question: how does the energy spectrum compare to the (full)
marked length spectrum?

The marked length spectrum carries much more information than the simple length spec-
trum. Namely, Otal proved in [19] that the set of negatively curved Riemannian metrics on
a surface, determined up to isotopy, satisfies marked length spectrum rigidity. Furthermore,
in [6], it is proved that the same holds true for the set of non-positively curved Riemannian
metrics under the additional assumptions that these metrics do not have conjugate points.
It follows in particular that for such metrics the marked length spectrum determines the
energy spectrum. An interesting question is now whether the sensitivity of energy spectrum
falls strictly between that of the simple length spectrum and full marked length spectrum or
whether the energy spectrum can also distinguish between all non-positively curved Rieman-
nian metrics.

Taking this one step further wemention that Bonahon showed in [4] that when considering
marked length spectrum rigidity one can not drop the assumption that the metrics under con-
sideration are Riemannian. More precisely, for any Riemannian metric of negative curvature
on S he constructed a non-Riemannian metric that has the same marked length spectrum but
that is not isometric by an isometry isotopic to the identity. The notion of Dirichlet energy can
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be generalised tomaps betweenmanifolds with non-Riemannianmetrics (see [13]) and hence
also in this context the energy spectrum can be defined. This allows us to ask whether the
energy spectrum could perhaps providemore information and distinguish between negatively
or non-positively curved non-Riemannian metrics.

A similar question for harmonic maps between flat tori is considered in [10]. There two
non-isometric 16 dimensional flat tori are exhibited which can not be distinguished by the
energy spectrum when the surface S is the two-dimensional torus.

5 Energy spectrum rigidity

We now consider the question whether the energy spectrum of a Riemannian metric uniquely
determines that metric (up to isotopy). IfM is a set of metrics on S, determined up to isotopy,
then we can consider the mapM → C0(T (S))mapping a metric to its energy spectrum. We
sayM satisfies energy spectrum rigidity if thismap is injective. In light of Theorem3.2we see
that this question is closely related to the question which classes of metrics on surfaces satisfy
simple length spectrum rigidity. We describe here some examples where energy spectrum
rigidity does hold.

5.1 Hyperbolic metrics

Weconsider the set of hyperbolicmetrics on S, defined up to isotopy. As discussed in Sect. 2.1
this is the Teichmüller space of S. The existence of the harmonic maps under consideration
is in this case a consequence of [9].

It follows from elementary considerations on harmonic maps between surfaces that T (S)

satisfies energy spectrum rigidity, even without invoking simple length spectrum rigidity.
Namely, we see from Lemma 4.2 that a point in Teichmüller space can be recovered from its
energy spectrum by locating the unique minimum.

Corollary 5.1 The set of hyperbolic metrics on S, defined up to isotopy, satisfies energy
spectrum rigidity.

5.2 Singular flat metrics

As described in Sect. 2.4 a quadratic differential on a surface induces a metric on that surface.
Away from the zeroes of the quadratic differential these metrics are locally flat and at the zero
points they have a cone singularity of cone angle (2 + p)π , p ∈ N (for more information
see [7]). We call such metrics singular flat metrics on the surface. We consider the setM of
singular flat metrics on the surface S that are induced by quadratic differentials, up to isotopy.
The space of quadratic differentials, and hence also M, can be canonically identified with
the cotangent bundle of T (S).

In [7] Duchin, Leiniger and Rafi prove the following theorem.

Theorem 5.2 ([7,Theorem 1]). Let M1 ⊂ M be the set of singular flat metrics on S with
area one, defined up to isotopy. The set M1 satisfies simple length spectrum rigidity.

Combining this fact with Theorem 3.2 and Lemma 4.2 easily gives the following corollary.

Corollary 5.3 The set of singular flat metrics that are induced by quadratic differentials,
defined up to isotopy, satisfies energy spectrum rigidity.
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Proof Let ρ, ρ′ ∈ M be two singular flat metrics on S with equal energy spectrum.
Lemma 4.2 gives Area(S, ρ) = Area(S, ρ′). Then the rescaled metrics ρ/Area(S, ρ) and
ρ′/Area(S, ρ′) lie in M1 and by Theorem 3.2 have equal simple length spectrum. It now
follows from Theorem 5.2 that there exists an isometry between ρ and ρ′ that is isotopic to
the identity. �

Let us mention that also in this case the energy infimum in the definition of the energy
spectrum is always realised by a harmonic map. These are however not harmonic maps in
the precise sense we defined above because singular flat metrics are not actual Riemannian
metrics. However, a more general notion of harmonic map, allowing for maps into metric
spaces, has been developed in [13]. Theorem 2.7.1 of that paper yields the existence of
harmonic maps into surfaces equipped with singular flat metrics. In order to apply this result
we note that if S is a surface of genus at least two equipped with a singular flat metric, then
its universal cover is a metric space of non-positive curvature (in the sense of Alexandrov).

6 Kleinian surface groups

A Kleinian surface group is a representation ρ : π1(S) → PSL(2,C) that is discrete and
faithful. Because PSL(2,C) acts on H

3 by isometries, given a Kleinian surface group ρ we
can consider the hyperbolic 3-manifold N = H

3/ρ(π1(S)). The representation ρ induces an
identification between π1(S) and π1(N ). As a result there is a one-to-one correspondence
between the free homotopy classes of loops in S and those of loops in N . The translation
length of an element ρ(γ ) (γ ∈ π1(S)), denoted 	ρ(γ ), is defined to be the infimum of
the lengths of loops in N that lie in the free homotopy class determined by γ . If ρ(γ ) is a
parabolic element, then 	ρ(γ ) = 0. If ρ(γ ) is an hyperbolic element, then it is conjugate to
a matrix of the form

(

λ 0
0 λ−1

)

with λ ∈ C, |λ| > 1. In this case

	ρ(γ ) = 2 log|λ|. (5)

The simple length spectrum of a Kleinian surface group is the vector (	ρ(γ ))γ∈S .
The representation ρ determines a unique homotopy class [ f ] of maps from S to N that

lift to ρ-equivariant maps ˜S → H
3. We define the energy spectrum of a Kleinian surface

group to be the energy spectrum of the hyperbolic manifold N = H
3/ρ(γ ) and the homotopy

class [ f ].
In this section we prove the following analogue to Theorem 3.2.

Theorem 6.1 Let ρ, ρ′ : � → PSL(2,C) be two Kleinian surface groups. If the energy
spectra of ρ and ρ′ coincide, then their simple simple length spectra coincide.

Bridgeman and Canary prove in [1,Theorem 1.1] that a Kleinian surface group is
determined up to conjugacy by its simple length spectrum. Combining their result with
Theorem 6.1 gives the following corollary.

Corollary 6.2 If ρ, ρ′ : � → PSL(2,C) are Kleinian surface groups with equal energy spec-
trum, then ρ′ is conjugate to either ρ or ρ.
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Fig. 3 Overview of the positions
of the arcs γ1, γ2, η1 and η2

x0

x1

γ1

γ2

η1

η2

The proof detailed in Sect. 3 can largely be carried over to the case of Kleinian surface
groups. We do, however, need a replacement for Lemma 2.2. This will be provided by the
following lemma.

Lemma 6.3 Let ρ : � → PSL(2,C) be a Kleinian surface group. Let γ, η ⊂ S be simple
closed curves with i(γ, η) ∈ {1, 2}. Then there exists a constant C = C(ρ, γ, η) > 0 such
that

	ρ(T n
γ η) ≥ n · i(γ, η) · 	ρ(γ ) − C

for all n ≥ 1.

Our proof is along similar lines as [1,Lemma 2.2].

Proof We first consider the case i(γ, η) = 2. Let us denote γ ∩ η = {x0, x1}. We assume
that γ and η are parametrised loops starting at x0. If we take x0 as the basepoint of the
fundamental group, then we can consider γ and η as elements of π1(S, x0). We denote by
γ1 and η1 the subarcs of γ and η respectively that connect x0 to x1 and we denote by γ2 and
η2 the subarcs connecting x1 to x0 (see Fig. 3).

We now find the following expression for the element T n
γ η ∈ π1(S, x0),

T n
γ η = η2(γ

−1
2 γ −1

1 )nη1γ
n

= η2γ1(γ
−1
1 γ −1

2 )nγ −1
1 η1γ

n

= σγ −nνγ n

where we put σ = η2γ1, ν = γ −1
1 η1 ∈ π1(S, x0).

We note that if ρ(γ ) is a parabolic element, then 	ρ(γ ) = 0 and the statement is trivial.
Hence, from now on we assume ρ(γ ) is a hyperbolic element. By conjugating the represen-
tation ρ we can assume that, for some λ ∈ C, |λ| > 1, we have

ρ(γ ) =
(

λ 0
0 λ−1

)

.

Note that a matrix representing an element of PSL(2,C) is only determined up to a multi-
plication by ± id. However, for our calculation of the translation length this does not matter.

For suitable coefficients a, b, c, d, a′, b′, c′, d ′ ∈ C we can write

ρ(σ ) =
(

a b
c d

)

and ρ(ν) =
(

a′ b′
c′ d ′

)

.

We note that coefficients of these matrices do not vanish. Namely, if a coefficient of, say,
ρ(σ ) vanishes, then it maps a fixed point of ρ(γ ) to a fixed point of ρ(γ ). Then ρ(σγ σ−1)
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and ρ(γ ) share a fixed point which implies they must have a common power because ρ(�)

is discrete. Because the elements γ and σγ σ−1 do not have a common power this would
contradict that the representation ρ is faithful.

A simple calculation yields that

ρ(T n
γ η) = ρ(σγ −nνγ n) =

(

aa′ + λ2bc′ bd ′ + λ−2ab′
ca′ + λ2dc′ dd ′ + λ−2cb′

)

.

Now if
(

α β
γ δ

)

∈ SL(2,C), then its eigenvalues are given by

μ± = α + δ

2
± 1

2

√

(α + δ)2 − 4.

Applying this to ρ(T n
γ η) (that is, taking α = aa′ + λ2bc′ and δ = dd ′ + λ−2cb′) we find

that

μ+ = λ2n(bc′ + O(|λ|−2n)).

Using Equation (5) and the fact that bc′ �= 0 gives

	ρ(T n
γ η) = 2 log|μ+| = 4 · n · log|λ| + log(|bc′ + O(|λ|−2n)|)

= 2 · n · 	ρ(γ ) + O(1) = i(γ, η) · n · 	ρ(γ ) + O(1) as n → ∞
This proves the lemma for the case i(γ, η) = 2. In the case i(γ, η) = 1 we have that
T n

γ η = ηγ n . The calculation of the largest eigenvalue of ρ(ηγ n) is similar and is carried out
in [1,Lemma 2.2]. Filling the formula of that lemma into Equation (5) immediately gives the
result also in this case. �

We can now give a proof of Theorem 6.1.

Proof of Theorem 6.1 The proof of Theorem 3.2 goes through in the present situation mostly
unchanged. Let us only point the modifications that need to be made. In this proof we denote
by [ f ] the homotopy class of maps S → N that lift to a ρ-equivariant map ˜S → H

3.
First we consider the proof of Lemma 3.5. Let γ ∈ π1(S) be an element that corresponds

to a simple closed curve. If ρ(γ ) is hyperbolic, then there exists a length minimising geodesic
loop η : R/Z → N in the free homotopy class determined by γ . By deforming a map in [ f ]
we can construct a Lipschitz continuousmap k0 : S → N such that k0 ∈ [ f ] and k0(x, [y]) =
η([y]) on Aε (notation as in the proof of Definition 3.3). The maps kn can then be constructed
as before and the energy estimates also go through.We find that τ+(X , γ ) ≤ 1

2 EX (γ )·	2ρ(γ ).
If ρ(γ ) is a parabolic element, then no such geodesic loop exists. However, since 	ρ(γ ) =

0 there exists for every δ > 0 a closed loop η : R/Z → N with l(η) ≤ δ. If we then take a
map k0 : S → N in the homotopy class [ f ] with k0(x, [y]) = η([y]) on Aε and carry out the
rest of the argument of the proof of proof of Lemma 3.5 we find

τ+(X , γ ) ≤ 1

2
EX (γ ) · l2(η) ≤ 1

2
EX (γ ) · δ2.

Since δ was arbitrary τ+(X , γ ) = 1
2 EX (γ ) · 	2ρ(γ ) = 0 follows.

Let us now consider the proof of Lemma 3.6. Suppose γ, η ∈ π1(S) correspond to simple
closed curves with i(γ, η) ∈ {1, 2}. Any map in [ f ◦ T n

γ ] maps the curve η to a curve in the
free homotopy class determined by T n

γ η. The results of Lemma 6.3 and Lemma 2.9 then give
rise to the estimate
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τ−(X , γ ) ≥ 1

2

i(γ, η)2 · 	2ρ(γ )

EX (η)

in the same way as in the proof of Lemma 3.6.
It follows that the estimates of Equation (4) are also true in the present situation whenever

i(γ, η) ∈ {1, 2}. Because the curves γ and η constructed in Lemma 2.8 do satisfy this
condition we see that the remainder of the proof of Theorem 3.2 can now be followed
verbatim. �

7 Hitchin representations

A Hitchin representation is a representation ρ : π1(S) → PSL(n,R) that lies in a par-
ticular connected component (discovered by Hitchin in [11]) of the representation variety
Rep(π1(S),PSL(n,R)). Such representations are discrete, faithful ([14]) and act isometri-
cally on the symmetric space PSL(n,R)/PSO(n). It follows that their simple length spectrum
and energy spectrum can be defined in the same manner as in the previous section.

As stated in the introduction our main interest is the study of the energy spectrum for
Hitchin representations. Unfortunately, the methods presented here are not sufficient to con-
clude that a Hitchin representation is uniquely determined by its energy functional. Let us
briefly describe the difficulty we encounter.

The author believes that an analogue of Lemma 6.3 holds also for Hitchin representations.
Then the proof presented in the previous section can be carried out for Hitchin representa-
tions. Hence, it seems likely that their simple length spectrum is also determined by their
energy spectrum. However, it is not known to the author whether a Hitchin representation is
determined by its simple length spectrum (as we define it here).

Let us point out that very closely related results are obtain by Bridgeman, Canary and
Labourie in [2]. Namely, they prove that Hitchin representations are rigid for a different type
of simple length spectrum2. Let us briefly describe the difference. If γ ∈ π1(S), then the
ρ(γ ) is a diagonalisable matrix with real eigenvalues (which are determined up to sign).
Denote these by λ1, . . . , λn . Then the spectral length of ρ(γ ) is Lρ(γ ) = maxi=1,...,n |λi |
and its trace is |Tr(ρ(γ ))| = ∑n

i=1|λi |. In [2] it is proved that a Hitchin representation is
determined, up to conjugacy, by its simple (spectral) length spectrum (Lρ(γ ))γ∈S and by its
simple trace spectrum (|Tr(ρ(γ ))|)γ∈S . In contrast, the simple length spectrum we consider
in this paper assigns to each simple closed curve γ the translation length of ρ(γ ), which is

given by 	ρ(γ ) =
√

∑n
i=1|λi (ρ(γ ))|2. So in order to finish the circle of ideas presented in

this paper it remains to answer the question whether a Hitchin representation is determined,
up to conjugacy, by its simple (translation) length spectrum.
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